Transformative discoveries in genome and cellular integrity

Publications

SHLD1 is dispensable for 53BP1-dependent V(D)J recombination but critical for productive class switch recombination

Vincendeau E, Wei W, Zhang X, Planchais C, Yu W, Lenden-Hasse H, Cokelaer T, Pipoli da Fonseca J, Mouquet H, Adams DJ, Alt FW, Jackson SP, Balmus G, Lescale C, Deriano L.

Nat Commun. 13(1):3707.

SHLD1 is part of the Shieldin (SHLD) complex, which acts downstream of 53BP1 to counteract DNA double-strand break (DSB) end resection and promote DNA repair via non-homologous end-joining (NHEJ). While 53BP1 is essential for immunoglobulin heavy chain class switch recombination (CSR), long-range V(D)J recombination and repair of RAG-induced DSBs in XLF-deficient cells, the function of SHLD during these processes remains elusive. Here we report that SHLD1 is dispensable for lymphocyte development and RAG-mediated V(D)J recombination, even in the absence of XLF. By contrast, SHLD1 is essential for restricting resection at AID-induced DSB ends in both NHEJ-proficient and NHEJ-deficient B cells, providing an end-protection mechanism that permits productive CSR by NHEJ and alternative end-joining. Finally, we show that this SHLD1 function is required for orientation-specific joining of AID-initiated DSBs. Our data thus suggest that 53BP1 promotes V(D)J recombination and CSR through two distinct mechanisms: SHLD-independent synapsis of V(D)J segments and switch regions within chromatin, and SHLD-dependent protection of AID-DSB ends against resection.

Kate Dry